
stratum / stratum / docs / tai / README.md

 Yi-Tseng Cleanup TAI implementation (#224)

df64df5 21 days ago

2 contributors

 master Branch: Find file Copy path

287 lines (199 sloc) 11.8 KB

Transponder Abstraction Interface(TAI)
support
This document provides an overview of the TAI library and interaction with TAI library
wrapper and Stratum.

The Overview

Figure below shows the overview of components which related to TAI support, we will cover
these components from bottom to the top in following sections.

TAI Interface

gNMI

Switch Broker Interface

PHAL

TAI PHALTAI Switch Configurator

PHAL Database

Optical Adapter

TAI Data Source

TAI Wrapper

TAI Shell Server libtai.so

gNMI and Stratum types
gNMI.proto
common.proto

Stratum common types
common.proto
phal.proto
db.proto

TAI types
taish.proto
taitypes.h

gRPC TAI C++ API

Terminology

Adapter Host - is hardware-independent software which uses the TAI interface to
provide optical transponder functionality to other parts of the system. An adapter host
loads the shared library adapter.

Raw Blame History

https://github.com/stratum/stratum
https://github.com/stratum/stratum/tree/master/stratum
https://github.com/stratum/stratum/tree/master/stratum/docs
https://github.com/stratum/stratum/tree/master/stratum/docs/tai
https://github.com/Yi-Tseng
https://github.com/Yi-Tseng
https://github.com/stratum/stratum/commit/df64df508308f557b6e09a697a21a2c8dc0a4c0c
https://github.com/stratum/stratum/pull/224
https://github.com/stratum/stratum/commit/df64df508308f557b6e09a697a21a2c8dc0a4c0c
https://github.com/stratum/stratum/commit/df64df508308f557b6e09a697a21a2c8dc0a4c0c
https://github.com/stratum/stratum/commits/master/stratum/docs/tai/README.md?author=pudelkoM
https://github.com/stratum/stratum/commits/master/stratum/docs/tai/README.md?author=Yi-Tseng
https://github.com/stratum/stratum/find/master
https://github.com/Telecominfraproject/oopt-tai
https://github.com/stratum/stratum/blob/master/stratum/docs/tai/img/overview.svg
https://github.com/stratum/stratum/raw/master/stratum/docs/tai/README.md
https://github.com/stratum/stratum/blame/master/stratum/docs/tai/README.md
https://github.com/stratum/stratum/commits/master/stratum/docs/tai/README.md
https://desktop.github.com/

Module - is an object which represent an optical module (e.g., AC400 that is used in
Voyager transponder).

Host Interface - is an object which represents an interface between an optical module
and the host system, sometimes called client interface. Actually, this is an interface
between an optical module and Ethernet ASIC.

Network Interface - is an object which represents hardware components that
transmits/receives one wavelength. Or in other words, this is actually hardware that
caries about an optical connection.

Transponder

Transponder

Switching ASIC

Module

Network Interface

Network Interface

Host Interface

Host Interface

Enabling TAI Support in Stratum

To build PHAL with the TAI backend, add the following define to all Bazel build commands:

bazel build --define phal_with_tai=true //stratum/...

Follow the relevant build instructions for Broadcom chips as usual.

Additional TAI Switch Setup

When built like described above, the Debian package will depend on the TAI package being
available on the switch as well. To prepare the switch, download the pre-built package
cassini-tai_1.0_amd64.deb from your distributor and install it:

apt-get install --reinstall cassini-tai_1.0_amd64.deb

The TAI package itself depends on Docker, so you might want to install that first.

TAI is managed by systemd, so use the usual commands to manage that:

systemctl start taish-server.service # status|stop
systemctl enable taish-server.service

journalctl -feu taish-server

TAI Troubleshooting on Cassini

Optical ports (host interfaces) do not come up in the SDK

Occasionally the host interfaces will stop coming up in the SDK, but did so before and the
configuration did not change.

1. Stop Stratum

https://acacia-inc.com/product/ac400-flex/
https://engineering.fb.com/connectivity/an-open-approach-for-switching-routing-and-transport/
https://github.com/stratum/stratum/blob/master/stratum/docs/tai/img/terminology.svg
https://github.com/stratum/stratum/blob/master/stratum/docs/tai/stratum/hal/bin/bcm/standalone/README.md
https://docs.docker.com/engine/install/debian/

2. Stop Taish server: systemctl stop taish-server.service
3. Pull and re-insert the big line-cards from both switches (on both sides)
4. Start taish server: systemctl start taish-server.service
5. Check taish logs until this message appears: docker logs -f taish-server :

DEBUG [int tai::nel::HW::controller_status()@1866] [module(1)] auto traffic state:
3
DEBUG [int tai::nel::HW::controller_status()@1868] [module(1)] auto traffic err
history: 0x0
DEBUG [int tai::nel::HW::controller_status()@1870] [module(1)] RX_LOS: false
DEBUG [int tai::nel::HW::controller_status()@1872] [module(1)] RXI-LOSI: false,
MLD-LOL: false

6. Start Stratum
7. Check port status: ps

Stratum TAI Interface and TAI Wrapper

TAI Interface

The TAI interface provides an abstract interface between Stratum data source and the actual
implementation.

This interface provides these function definitions for Stratum data source:

Get module, network interface, and host interface IDs
Get current input and output power
Get/Set TX laser frequency of a network interface
Get/Set target output power
Get/Set modulation format

TAI Wrapper

A TAI Wrapper is an implementation of the TAI Interfcace.

There are two ways to manage optical transponders via TAI.

Native C/C++ API (tai.h)
gRPC TAI Shell (taish.proto)

In Stratum, we are using the taish.proto to create a gRPC client to communicate to TAI Shell.
The Native C/C++ API is still work in progress. For more information, see taish_client.cc

PHAL integration

According to the current PHAL architecture, the following interfaces were implemented for
TAI.

TaiOpticsDataSource

https://github.com/Telecominfraproject/oopt-tai/blob/master/tools/taish/proto/taish/taish.proto
https://github.com/stratum/stratum/blob/master/stratum/hal/lib/phal/tai/taish_client.cc

This component provides a common layer between PHAL database and the TAI interface. It
will call functions from TAI interface (the wrapper) directly to get/set information for a
specific TAI network interface.

OpticsAdapter

The optics adapter helps PHAL to access the PHAL database. It basically create a database
get or set request based on the function call from PHAL layer and returns the result.

TaiSwitchConfigurator

This component provides a default optical module and network interface configurations and
it is responsible for configuring PhalDB during the initialization.

TaiPhal

Enables PhalBackendInterface functionality for TAI. This component should manage the
gNMI event writters and TAI wrapper state. Also, it should be able to help collecting
transponder states.

Note: This component is currently not implemented.

PHAL Configuration

The PhalInitConfig was extended with the PhalOpticalModuleConfig config support.

In PhalOpticalModuleConfig , there will be one or many network interfaces in a module,
each module or network interface includes a special field called vendor_specific_id which
is used for storing a vendor specific identifier for different implementation. In this case(TAI),
this ID is repersent the object ID in TAI abstraction.

Here is an example of module config:

optical_modules {
 module: 1 # the 1-based index of the module
 network_interfaces {
 network_interface: 1 # the 1-based index of the network interface
 vendor_specific_id: 10 # the object id of the network interface
 }
 vendor_specific_id: 1 # the object id of the module
}

The new attributes were introduced into PhalDB . Like PHAL config, there exists multiple
optical module and each module can include several optical network interfaces.

message OpticalModule {
 message NetworkInterface {
 int32 id = 1;
 uint64 frequency = 2; // Measured in Hz.
 double input_power = 3; // Measured in dBm.
 double output_power = 4; // Measured in dBm.
 double target_output_power = 5; // Measured in dBm.

 uint64 operational_mode = 6;
 }
 int32 id = 1;
 repeated NetworkInterface network_interfaces = 2;
}

message PhalDB {
 // ...
 repeated OpticalModule optical_modules = 6;
}

Note that we are not supprting configuring the Hoet Interface in TAI for now. This may
be a future task that contributed by the community.

Supported OpenConfig models(gNMI paths)

The OpenConfig model provides an optical channel configuration. Below are YANG models
on GitHub we are using for TAI support:

https://github.com/openconfig/public/blob/master/release/models/platform/openconfi
g-platform-transceiver.yang;
https://github.com/openconfig/public/blob/master/release/models/optical-
transport/openconfig-terminal-device.yang.

The entire model represents the set of gNMI configuration paths. Here are supported paths.

"state/..." paths (read only):

/components/component[name]/optical-channel/state/frequency
/components/component[name]/optical-channel/state/operational-mode
/components/component[name]/optical-channel/state/output-power/instant
/components/component[name]/optical-channel/state/input-power/instant

"config/..." paths (read and write):

/components/component[name]/optical-channel/config/frequency
/components/component[name]/optical-channel/config/operational-mode
/components/component[name]/optical-channel/config/target-output-power

Other paths:

/components/component[name]/name
/components/component[name]/config/name

Note: Both currently are read-only and report the component node name as well as
Stratum doesn't support node renaming for now.

/components/component[name]/optical-channel/state/line-port
/components/component[name]/optical-channel/config/line-port

https://github.com/openconfig/public/blob/master/release/models/platform/openconfig-platform-transceiver.yang
https://github.com/openconfig/public/blob/master/release/models/optical-transport/openconfig-terminal-device.yang

Note: The line port should be a reference to another node. Currently, they are both
read-only value, which has set through the initial ChassisConfig (for both "state" and
"config").

/components/component[name]/state/type

Note: will get "OPTICAL_CHANNEL" if it is an optical component

ChassisConfig extensions

A new OpticalNetworkInterface protobuf message was introduced into the ChassisConfig.

It stores the data required by the Stratum to set up and some initial optical network
interface configuration.

Here is an example of the optical network interface configuration.

optical_network_interfaces {
 id: 4 # the object id of TAI
 name: "card-1001"
 module: 1
 network_interface: 1
 target_output_power: -3
 line_port: "card-1001"
 frequency: 195000000000
 operational_mode: 2
}

OpenConfig and TAI attributes mapping through the gNMI
paths

Find the full TAI attributes' list here: https://github.com/Telecominfraproject/oopt-
tai/blob/master/inc/tainetworkif.h

terminal-optical-

channel-config attribute
gNMI path under

/comonents/component[name]/
Corresponding TAI

attribute

frequency config/frequency TX_LASER_FREQ

operational-mode config/operational-mode MODULATION_FORMAT *

target-output-power config/target-output-power OUTPUT_POWER

terminal-optical-

channel-state

attribute

gNMI path under
/comonents/component[name]/

Corresponding TAI
attribute

frequency state/frequency TX_LASER_FREQ

operational-mode state/operational-mode MODULATION_FORMAT *

https://github.com/Telecominfraproject/oopt-tai/blob/master/inc/tainetworkif.h

terminal-optical-

channel-state

attribute

gNMI path under
/comonents/component[name]/

Corresponding TAI
attribute

output-power state/output-power CURRENT_OUTPUT_POWER

input-power state/input-power CURRENT_INPUT_POWER

Note: The "operational mode" is a vendor-specific configuration of the channel
represented by 16 bits. In TAI, we set modulation only. The following table pictures the
bidirectional mapping of operational mode and modulation.

operational mode modulation

1 MODULATION_FORMAT_DP_QPSK

2 MODULATION_FORMAT_DP_16_QAM

3 MODULATION_FORMAT_DP_8_QAM

Todos

ChasisConfig to OpenConfig conversion and vise versa

Stratum supports the "Get"/"Set" operations for the entire ChassisConfig only in the
OpenConfig format. Applying/retrieving of the entire OpenConfig at once in Stratum should
be extended with the optical network interface.

"/name" and "/line-port" complete implementation

Stratum doesn't support Yang tree nodes renaming. Since the "config/name" paths
represent the names of the actual nodes, they should be made configurable when Stratum
supports that.

Collecting data from optical network interfaces

In OpenConfig model, there are few leaves which stores min, max, and average input/output
power of a network interface. However, TAI does not provide these data. We need to collect
those information and store in Stratum.

Notification support

Support notification such as input/output power report.

